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1. Introduction

In the frame of the PDF modelling approach, we
propose in the present paper to study the performance of
relations for the mean turbulent particle and fluid–particle
properties derived by Zaichik et al. (2004) from a statistical
model for the transport of particles in quasi-homogeneous
turbulent flows. This model, called Anisotropic TimeScale
model (ATS), has the advantage over the majority of con-
tinuum two-fluid models of taking the directional depen-
dence of the timescales of the turbulence into account.
Assuming these timescales identical to those obtained
along fluid-element trajectories, it was demonstrated by
Zaichik et al. (2004) that this model reproduces correctly
the crucial trends of the particle statistics in a linear shear
turbulent flow.

Nevertheless, in the model proposed by Zaichik et al.
(2004), the correlations of the fluid fluctuating velocity
viewed by a particle were assumed to be identical to those
obtained along fluid-element trajectories due to the diffi-
culty of predicting the inertia and crossing trajectory effects
on these correlations (Wang and Stock, 1993). Therefore,
the statistical bias that exist between the turbulent proper-
ties of the fluid viewed by a particle and those of the fluid
were neglected. In the present study, we propose to evalu-
ate the performance of two versions of the ATS model. In
the first one, the inertia and crossing trajectory effects on
the turbulent properties of the fluid viewed by a particle
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are taken into account, whereas the second version is iden-
tical to the one proposed by Zaichik et al. (2004). Knowing
the importance of introducing the turbulent properties of
the fluid seen by a particle in the ATS model, we will able
to conclude on the possibility to overcome the problem of
knowing a priori these properties.

In order to evaluate the performance of the two versions
of the ATS model in non-homogeneous turbulent flows,
results obtained from a direct numerical simulation of a
gas-particle channel flow are compared to those predicted
by these models. This investigation is conducted at moder-
ate Reynolds number without taking the gravity force into
account, and for three sets of particles characterized by dif-
ferent relaxation times. It has to be noted that in this flow
configuration, the crossing trajectory effect can appear due
to the existence of a nonzero mean relative velocity
between the fluid and the particles (see Ferry et al.,
2003). Nevertheless, this effect cannot be considered as sig-
nificant due to the low magnitude of the mean relative
velocity (Arcen et al., 2004). Consequently, the statistical
bias between the turbulent properties of the fluid viewed
by a particle and those of the fluid is mainly induced by
the inertia effect.

2. PDF model description

In this section, we present the modified version of the
ATS model in which the inertia and crossing trajectory
effects on the turbulent properties of the fluid viewed by
a particle are taken into account. The theoretical ground
of the model being considered is a kinetic equation for
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the PDF of the particle velocity. This kinetic equation
describes the interaction of particles with fluid turbulent
eddies. The operator providing the particle–turbulence
interaction in the kinetic equation was derived with model-
ling the fluid turbulence by a Gaussian random process and
using the functional formalism (Zaichik, 1999; Zaichik
et al., 2004). To focus upon the transport of particles, we
consider the so-called one-way coupling between particles
and turbulent eddies. By this is meant that the particle vol-
ume and mass fractions are small enough such that parti-
cle–particle interactions and turbulence modulation by
particles can be neglected. Moreover, we assume that the
particle density is much more than that of the carrier fluid
(in this case, the drag force acting on a particle is only of
importance), and the particle size is small as compared to
the Kolmogorov lengthscale. In such a statement, the
kinetic equation for the PDF of the particle velocity distri-
bution, P ðx; v; tÞ, has the following form (Zaichik et al.,
2004):
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where F i denotes the external force acting on a particle per
unit mass, and sp is the Stokes particle response time which
can be expressed in terms of the particle diameter ðdpÞ, the
particle and fluid densities ðqp and qfÞ, and the kinematic
viscosity ðmÞ as sp ¼ ðqpd2
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kij ¼ ~u0i~u
0
k

� � fkj

sp

þ lkn
oh~uji
oxn
þ spmkl

oh~uni
oxl

oh~uji
oxn

� �
;

lij ¼ ~u0i~u
0
k

� �
gkj þ sphkn

oh~uji
oxn

� �
;

ð2Þ

where h~uii and ~u0i~u
0
k

� �
are the mean velocity and Reynolds

stresses of the fluid seen by particles. To introduce the sta-
tistical bias between the turbulent properties of the fluid
viewed by a particle and those of the fluid, the mean veloc-
ity and Reynolds stresses of the carrier phase have been
substituted by the Reynolds stresses of the fluid seen in
the original definition of the response coefficients proposed
by Zaichik et al. (2004). In Eq. (2), the coefficients
fij; lij;mij; gij and hij measure the response of particles to
velocity fluctuations of the fluid and are related to the time-
scales tensor of the fluid velocity viewed by a particle.

The terms on the left- and right-hand sides of the kinetic
equation (Eq. (1)) describe, respectively, the convective
transport of the PDF in phase space and the diffusion
transfer caused by the particle–turbulence interaction.
Modelling the fluid turbulence by means of a Gaussian
process enables the particle–turbulence interaction to be
expressed explicitly in the form of the second-order differ-
ential operator. This diffusion operator takes proper
account of the effect of timescale anisotropy through the
response coefficients. In the case of negligible timescale
anisotropy, the response coefficients are scalars rather than
tensors. The kinetic equation completely controls the veloc-
ity statistics of the particulate phase. However, for most
practical purposes, the kinetic level of modelling is not only
computationally too expensive, but is also unnecessary
because macroscopic properties are usually all that are
needed. Another computationally less expensive way is to
solve the conservation equations for several first moments
of the PDF. The kinetic equation (Eqs. (1)) and (2) gener-
ates the following set of governing continuum equations
describing the conservation of mass, momentum, and par-
ticulate stresses as the appropriate statistical moments of
the particle velocity PDF:
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Here U, hvp;ii, and v0p;iv
0
p;j

D E
are the particle volume frac-

tion, the mean particle velocity, and the particle kinetic

stresses, respectively. In Eq. (4), Dp;ik ¼ sp v0p;iv
0
p;k

D E
þ lik

� 	
corresponds to the particle diffusivity tensor.

On the basis of this PDF approach, Zaichik et al. (2004)
also derived the following expressions for the fluid–particle
fluctuating velocity covariances, ~u0iv
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It should be noted that the influence of the mean fluid and
particle velocities is taken into account in these expressions.

In what follows, we now consider the developed flow in
a plane channel. All the characteristics of the carrier and
dispersed phases are assumed to be self-similar with respect
to the longitudinal coordinate, x1, and to depend only on
the coordinate normal to the wall, x2. The channel walls
are impermeable and particle deposition is absent. Accord-
ingly, the normal components of the averaged velocity of
both phases vanish ðhu2i ¼ hvp;2i ¼ 0Þ. Moreover, in this
study we assume that the particle velocity fluctuations are
locally homogeneous and the mean particle velocity is iden-
tical to the mean velocity of the fluid seen by particles.
These assumptions are valid only for not-too-high-inertia
particles when both the contribution of the transport effect
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to the particle velocity fluctuations and the difference
between the mean fluid and particle velocities are not of
very importance.

The sets of equations obtained for the particle kinetic
stresses and the fluid–particle covariances are sightly differ-
ent from those proposed by Zaichik et al. (2004) due to the
substitution of the turbulent properties of the carrier phase
by those of the fluid viewed by a particle in the specification
of the kinetic equation coefficients kij and lij. The model
proposed in this study for the particle kinetic stresses and
the fluid–particle covariances will be referred to hereafter
as modified ATS model, whereas the one proposed by Zaic-
hik et al. (2004), which are function of the fluid Eulerian
and Lagrangian statistics, will be referred to as original
ATS model.

3. Gas–solid channel flow DNS

The DNS solver, second order accurate in space and in
time (Orlandi, 2000), performs the simulation of a turbu-
lent channel flow at Reb ¼ 2800 (based on channel half-
width d and bulk velocity U b) corresponding to the Rey-
nolds number based on the wall-shear velocity equal to
184. The domain size in the streamwise, wall-normal, and
spanwise direction is 2:5pd� 2d� 1:5pd and the corre-
sponding grid 192� 129� 160, respectively. The assump-
tions and the numerical methods used to simulate the
dispersed phase can be found in Arcen et al. (2004,
2006), therefore, only the main characteristics will be pre-
sented hereafter. In the present study, the aerodynamic
forces considered are the non-linear drag and the shear-
induced lift force, both of them are corrected for near-wall
effects Arcen et al. (2006). It has to be noted that the
numerical predictions of the particle-laden channel flow
by the present code have been evaluated, in the frame of
an international test case, against the DNS data issuing
from the computational codes of the following participant
groups: C. Marchioli and A. Soldati; J.G.M. Kuerten; G.
Goldensoph and K. Squires; M. Cargnelutti and L.M. Por-
tela (for further details see Marchioli et al., 2007). The
comparison of the results obtained by these DNS codes,
which are based on different numerical methods, has shown
the accuracy of the present code. The simulations were run
for three sets of particles characterized by different Stokes
particle response times in wall units,1 sþp ¼ 2; 15:4 and
27.1. The corresponding dimensionless diameters are
dp=d ¼ 0:5� 10�3; 1:4� 10�3 and 1:4� 10�3, for which
density ratios, qp=qf , are 4166, 4166 and 7333 respectively.
For the initialization and the computation of the statistics
of the dispersed phase, the domain is divided in the wall-
normal direction into 128 slices, with the slice thickness
being equal to the wall-normal grid spacing. Initially,
5000 solid particles were distributed randomly in each slice,
1 Quantities in wall units are normalized with the viscous scales (i.e. the
wall-shear velocity us and the viscous lengthscale m=us) and will be
indicated hereafter by the superscript ð�Þþ.
and their initial velocity was set equal to the surrounding
fluid velocity. Therefore, the total number of particles
was thus 640,000 and the concentration is not initially uni-
form. Statistics on the dispersed phase were started after a
time lag of approximately tþ ¼ 600 to get results indepen-
dent of the imposed initial conditions.

It has to be noted that the DNS data used in the present
study have been extracted while particle statistics had not
already reached a stationary state since it requires a large
amount of time. Nevertheless, we think that the particle
statistics (with the exception of the mean concentration)
obtained in such a state are not significantly different from
those we have extracted after a time lag of approximately
tþ ¼ 600. Moreover, we have taken the non-linear drag
force corrected for near-wall effects and the optimum lift
force into account in the equation governing the motion
of a particle, whereas the ATS model was derived under
the assumption that the Stokes drag law is only of impor-
tance. However, it has been shown by Arcen et al. (2006)
that, in the absence of external forces, the drag corrections
and the use of the optimum lift force have a negligible
impact on the dispersed phase statistics such as mean
streamwise fluid and particles velocities, root mean square
of the particle velocities, fluid Reynolds stresses at parti-
cle location and fluid–particle covariance tensor. Therefore,
we can presume that the difference in the force considered
for the present numerical simulation and for the derivation
of the ATS model will not be responsible of significant
discrepancies between the DNS and ATS model results.

4. Results and discussion

In this section, the results predicted by the modified and
original ATS models will be compared to those issuing
from DNS and also from one the simplest existing model
for particle kinetic stresses and fluid–particle covariances
which was derived by Tchen (1947) and Hinze (1975). In
the present study, we have considered the extensions of
the original model, proposed by Simonin et al. (1993)
and Desjonqueres et al. (1986), which enable to link the
diagonal components of the particle kinetic stress and
fluid–particle covariance tensors to the Reynolds stresses
of the fluid seen. It should be noted that the Tchen–Hinze
model was established considering the motion of small par-
ticles at low particle Reynolds number in stationary homo-
geneous isotropic turbulence. Consequently, it is expected
that this model will not be able to predict correctly all
the components of the particle kinetic stress and fluid–par-
ticle covariance tensors since only the inertia filtering effect
is taken into account in the Tchen–Hinze theory. Finally, it
has to be noted that the Tchen–Hinze model presented here
is a modified version of the original model since the statis-
tics of the fluid seen by a particle were assumed identical to
those obtained along fluid-element trajectories in the stud-
ies conducted by Tchen (1947) and Hinze (1975). As for the
ATS model, both versions of this model will be evaluated
in the present study.
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Fig. 1. Prediction of the diagonal components of the particle kinetic stress tensor, v02p;i
D E

, by the ATS and Tchen–Hinze models. (a), (c), and (e): using
the statistics of the fluid seen by particles. (b), (d), and (f): using the fluid Eulerian and Lagrangian statistics. DNS: —, sþp ¼ 2; – –, sþp ¼ 15:4; – � –,

sþp ¼ 27:1. Tchen–Hinze model: M, sþp ¼ 2; �, sþp ¼ 15:4; �, sþp ¼ 27:1. ATS model: black symbols.
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4.1. Particle kinetic stresses

The diagonal components of the particle kinetic stress
tensor results issuing from the modified and original ATS
and Tchen–Hinze models are plotted as a function of the
wall-normal coordinate in Fig. 1.

Concerning the modified ATS and Tchen–Hinze mod-
els, it can be observed from Fig. 1a that the modified
ATS model overestimates the maximum of the streamwise

particle kinetic stress, v02p;1
D E

, for sþp ¼ 15:4 and 27.1

particles. In contrary to this ATS model, the modified
Tchen–Hinze model underestimates the DNS data since it
predicts a decrease of v02p;1
D E

as inertia increases, whereas

the DNS data show that inertia does not significantly influ-
ence this particle kinetic stress. The effect of particle inertia

on v02p;1
D E

, noted for the DNS data, has been theoretically

established in homogeneous shear flows (Liljegren, 1993;
Reeks, 1993; Simonin et al., 1995; Zaichik, 1999) and pre-
viously reproduced numerically in both homogeneous and
non-homogenous shear flows (Simonin et al., 1995; Wang
and Squires, 1996; Portela et al., 2002). This phenomenon
is mainly due to the production of streamwise particle
velocity fluctuation by the mean velocity shear. Therefore,
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Fig. 2. Prediction of the non-diagonal component of the particle kinetic stress tensor, v0p;1v0p;2
D E

, by the ATS model. (a) Using the statistics of the fluid seen
by particles. (b) Using the fluid Eulerian and Lagrangian statistics. DNS: —, sþp ¼ 2; – –, sþp ¼ 15:4; – � –, sþp ¼ 27:1. ATS model: same symbols as in Fig. 1.
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the Tchen–Hinze model cannot capture it, in contrary to
the ATS model in which the production term is present.
Nevertheless, despite this crucial effect can be qualitatively
reproduced by the ATS model, the values obtained are not
in very good accordance with the DNS data. The results
obtained for the wall-normal and spanwise particle kinetic
stresses, plotted in Fig. 1c and e, shows that the modified
ATS and Tchen–Hinze models predict correctly the
decrease of these particle stresses with increasing inertia.
The results issuing from Tchen–Hinze model for the span-
wise component are undistinguishable since the expression
used is identical to that of the ATS model. Consequently,

we can conclude from the results obtained for v02p;2
D E

and

v02p;3
D E

that both models are able to correctly predict the

inertia filtering effect.
The comparison between these results and those

obtained from the original ATS and Tchen–Hinze models
(Fig. 1b, d, and f), i.e. using the fluid Eulerian and
Lagrangian statistics, shows that the use of the statistics
of the fluid seen by particles does not lead to a significant
improvement of the predictions.

The modified ATS model results for the particle kinetic

shear stress, v0p;1v0p;2
D E

, are presented in Fig. 2a. It can be

seen that the model results are qualitatively and quantita-
tively in good accordance with those issuing from the
DNS computation. The model is able to correctly predict
the decrease of the magnitude of the particle kinetic shear
stress as inertia increases.

Concerning the particle kinetic shear stress predictions
by the original ATS model, plotted in Fig. 2b, the ATS
model predictions are seen to be less satisfactory when
the fluid Eulerian and Lagrangian statistics are used since
it underpredicts significantly the DNS data for
10 < yþ < 100 whatever the particle inertia.
4.2. Fluid–particle covariances

The performance of the modified and original ATS
models to predict the fluid–particle covariance was also
examined. The diagonal components of the fluid–particle

covariance tensor, ~u0iv
0
p;j

D E
, are plotted in Fig. 3 as a func-

tion of yþ for the three different particle sets. The results
obtained from the DNS computations and the modified
and original Tchen–Hinze models are also reported.

The streamwise fluid–particle covariance, ~u01v0p;1
D E

, given

by the modified ATS and Tchen–Hinze models are com-
pared to the DNS data in Fig. 3a. It can be noted that both
models predict correctly the decrease of the covariance as
the particle inertia increases. Nonetheless, a better quanti-
tative agreement is given by the ATS model, since the

Tchen–Hinze underpredicts significantly ~u01v0p;1
D E

for

yþ < 100 and sþp ¼ 15:4 and 27.1 particles. The decrease

of the streamwise fluid–particle covariance means that the
inertia filtering effect is more important than the effect of
production of the streamwise velocity fluctuation induced
by the mean velocity shear. However, keeping in mind that
the Tchen–Hinze model does not take this latter effect into
account, it can be concluded from the results given by this
model that the production induced by the mean velocity
shear cannot be neglected in the fluid–particle covariances
models. The wall-normal and spanwise components are
plotted in Fig. 3c and e. As expected, the modified ATS
and Tchen–Hinze models give similar results which are in
good agreement with the DNS data.

The predictions of the original ATS and Tchen–Hinze
models are plotted in Fig. 3b, d, and f. It can be seen that
the use of the fluid Eulerian and Lagrangian statistics leads
to a less accurate estimation of the streamwise component
by the ATS and Tchen–Hinze models. The discrepancies
are particularly significant for sþp ¼ 2 particles. The predic-
tions of the wall-normal and spanwise components are pre-
sented in Fig. 3d and f, the results are similar to those
obtained from the modified ATS and Tchen–Hinze models.
For this latter case, the predictions are noticed to be in bet-
ter agreement with the DNS data when the statistics of the
fluid seen by particles are used in the models.

Finally, the non-diagonal components of the fluid–parti-

cle covariance tensor, ~u01v0p;2
D E

and ~u02v0p;1
D E

, predicted by
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Fig. 3. Prediction of the diagonal components of the fluid–particle covariance tensor, ~u0iv
0
p;i

D E
, by the ATS and Tchen–Hinze models. (a), (c), and (e): using

the statistics of the fluid seen by particles. (b), (d), and (f): using the fluid Eulerian and Lagrangian statistics. DNS: —, sþp ¼ 2; – –, sþp ¼ 15:4; – � –,
sþp ¼ 27:1. Tchen–Hinze model: M, sþp ¼ 2; �, sþp ¼ 15:4; �, sþp ¼ 27:1. ATS model: black symbols.
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the modified ATS model are presented in Fig. 4a and c.
Note that this tensor is asymmetric. This property has been
theoretically established in homogeneous shear flows
(Simonin et al., 1995; Zaichik, 1999) and also previously
observed from Large Eddy Simulations of both homoge-
neous and non-homogenous shear flows (Simonin et al.,
1995; Wang and Squires, 1996). From the present DNS
results, it is seen that the asymmetry becomes more pro-
nounced as the inertia increases, more precisely, the magni-

tude of ~u01v0p;2
D E

decreases more rapidly than that of

~u02v0p;1
D E

. This effect is captured by the ATS model. Never-

theless, the model strongly underpredicts ~u01v0p;2
D E

whatever
the particle inertia while the influence of the particle inertia

on ~u02v0p;1
D E

is seen to be correctly estimated. A possible

explanation of the too strong decrease of ~u01v0p;2
D E

is that

there is no production term by a mean velocity gradient
in the expression derived from the ATS model.

The results issuing from the original ATS model are
presented in Fig. 4b and d. Similarly to the modified ATS
model, the original model, written in terms of the fluid Eule-
rian and Lagrangian statistics, does not estimate correctly

the influence of the particle inertia on ~u01v0p;2
D E

. The results

obtained for ~u02v0p;1
D E

are in acceptable agreement with the
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Fig. 4. Prediction of the non-diagonal components of the fluid–particle covariance tensor, ~u01v0p;2
D E

and ~u02v0p;1
D E

, by the ATS model. (a) and (c): using the
statistics of the fluid seen by particles. (b) and (d): using the fluid Eulerian and Lagrangian statistics. DNS: —, sþp ¼ 2; – –, sþp ¼ 15:4; – � –, sþp ¼ 27:1. ATS
model: same symbols as in Fig. 3.
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DNS data and the asymmetry of the fluid–particle tensor is
still reproduced by the original model. Nevertheless, a more
satisfactory prediction was obtained using the statistics of
the fluid seen by particles whatever the particle inertia.

5. Conclusion

The objective of the present paper was to study the per-
formance of relations for the mean turbulent particle and
fluid–particle properties, derived by Zaichik et al. (2004)
from a statistical model, in non-homogeneous turbulence.
To evaluate the ATS model performance in a non-homoge-
neous turbulent flow, results obtained from a direct numer-
ical simulation of a gas-particle channel flow are compared
to those predicted by the model. In the present study, the
performance of two versions of the ATS model have been
evaluated to determine the importance of accounting for
the statistical bias that exist between the turbulent proper-
ties of the fluid viewed by a particle and those of the fluid in
the specification of the parameters appearing in the model.
In the first one, the inertia and crossing trajectory effects on
the turbulent properties of the fluid viewed by a particle is
taken into account, whereas the second version is identical
to the one originally proposed by Zaichik et al. (2004). The
comparison has shown that the modified ATS model pre-
dicts correctly the influence of the particle inertia on the
four components of particle kinetic stress tensor, even if
the maximum of the streamwise component was found to
be overpredicted. In addition, this model has been seen
to be able to predict correctly the decrease of the diagonal
components of fluid–particle covariance tensor as inertia
increases and to reproduce the asymmetry of this tensor.
Nonetheless, one of the non-diagonal components has been
shown to be largely underestimated. It should be empha-
sized that a major drawback of the modified version of
the ATS model used in the present study is that it necessi-
tates to know beforehand the timescales of the fluid seen
when no external force is acting on particles and some
mean and turbulent statistics of the fluid viewed by a par-
ticle. Unfortunately, no models of these characteristics
exist for non-homogeneous turbulence. Further studies of
these parameters in such a turbulence are thus needed to
improve continuum two-fluid models. Nevertheless, this
study has shown that using the original version of the
ATS model, in which the inertia effect on the parameters
appearing in the model is neglected, leads to a less satisfac-
tory prediction, however, the results are still in acceptable
agreement with the DNS data. Consequently, as a first
approximation in a non-homogeneous flow, one could
overcome the problem of knowing a priori the statistical
features of the fluid velocity seen by the particles by consid-
ering that the Eulerian statistics of the fluid are identical to
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those of the fluid seen. The original ATS model could be
thus used in association with a model of the Lagrangian
timescales which reflects correctly the directional depen-
dence of these timescales, see Oesterlé and Zaichik (2004)
for instance, while the mean velocity and the Reynolds
stresses of the carrier flow could be obtained by means of
a second-moment closure model.

Finally, as expected, it has been seen that the simple
Tchen–Hinze model, which has been developed for station-
ary homogeneous isotropic turbulence, does not estimate
correctly the streamwise components of the particle kinetic
stresses and fluid–particle covariances. This points out the
importance of taking the production of the streamwise par-
ticle velocity fluctuation by the mean velocity shear into
account for assessing the particle kinetic stresses and of
the fluid–particle covariances in non-homogeneous turbu-
lent flows.

The next step of the present study should be to conduct a
similar comparison in the presence of an external force field
to examine the importance of taking the crossing trajectory
effects on the parameters appearing in the ATS model.
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Arcen, B., Tanière, A., Oesterlé, B., 2004. Numerical investigation of the
directional dependance of integral time scales in gas–solid channel
flow. In: Proceedings of the 5th International Conference on Multi-
phase Flow. Paper no. 297. Yokohama, Japan.
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